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Abstract

The numerical approximation of one-dimensional cubic nonlinear Schrödinger equations on the whole real axis is stud-
ied in this paper. Based on the work of A. Boutet de Monvel, A.S. Fokas and D. Shepelsky [Lett. Math. Phys., 65(3): 199–
212, 2003], a kind of exact nonreflecting boundary conditions are derived on the artificially introduced boundary points.
The related numerical issues are discussed in detail. Several numerical tests are performed to demonstrate the behaviour of
the proposed scheme.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study the numerical approximation of 1-D cubic nonlinear Schrödinger (NLS) equations
of the following form
0021-9
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E-m
iqt þ o2
xq� 2qjqj2q ¼ 0 x 2 R; t > 0;

qðx; 0Þ ¼ q0ðxÞ x 2 R
ð1Þ
where the real parameter q corresponds to a focusing (q = �1) or defocusing (q = 1) effect of the cubic
nonlinearity. The NLS equation is connected to many applications in science and technology. For exam-
ple, it has been tied to the motion of a vortex filament in inviscid incompressible fluids with the transfor-
mation of Hasimoto [13], and it has also been used to model the fiber architecture of aortic heart valve
leaflets [16].

The unboundedness of the definition domain of problem (1) presents a great numerical challenge, since any
standard domain-based method, such as finite element or finite difference, can only deal with a system of finite
degrees of freedom, and this is impossible when the definition domain is unbounded. Thus, a basic numerical
treatment of problem (1) is to restrict the computational domain to a finite interval X = (a, b) by introducing
991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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two artificial boundary points R = {a, b}, and to consider a new Schrödinger problem defined only in X. To
complete the new problem, two boundary conditions are necessary. The ideal ones, which will be given in this
paper, should not only be easy to implement, but make the solution of the new problem be exactly the same as
that of problem (1), namely, the waves originated from X are not (or at least not significantly) reflected when
they travel to the boundary points of R. If this property holds for the new problem, the boundary conditions
are usually said to be nonreflecting or transparent in the literature.

For the linear Schrödinger equations, how to derive the nonreflecting boundary conditions (NRBC) has
been widely studied by many authors. The readers are referred to [4,2,6,12]. But for the nonlinear Schrödinger
equations, the things turn to be much more complicated. A common treatment is to impose the homogeneous
Dirichlet boundary conditions on the boundary points [5,7,19,20]. This is reasonable only if the computational
interval is large enough, such that before the ending time point, the energy of the waves travelling to the
boundary points are satisfactorily small. Obviously, this treatment is not economical from the computational
point of view. An exception worth to be mentioned to solve this problem is the work by Antoine, Besse and
Descombes [3]. They developed a constructive approach and derived some approximate nonlinear NRBCs
based on the theory of pseudodifferential operators. The numerical tests given in their paper showed that their
boundary conditions are quite efficient for simulating the propagation of fast enough solitons, while a loss of
accuracy occurs for slower ones.

In this paper, as stated above, we will present a kind of exact NRBCs for the considered problem. Compared
with the approximate boundary conditions, the exact NRBCs have an unlimited potential to present the numer-
ical solutions with any prescribed accuracy. Our NRBCs are based on the work [10] of A. Boutet de Monvel
et al., in which they derived a general relation between the Dirichlet and the Neumann data on the artificial
boundary points. Unfortunately, this relation is unsuitable for the numerical purpose. We will derive some
equivalent relations by doing some calculus and study its related discrete issues in detail.

The organization of this paper is as follows. In Section 2, we present the exact NRBCs which are suitable
for the numerical treatment, and in Section 3, we deal with the numerical issues. We will propose a series of
numerical schemes and discuss the related computational issues in detail. Some numerical tests are given in
Section 4 to verify the accuracy and analyze the capacity of the proposed schemes. We conclude this paper
in Section 5.
2. Exact nonreflecting boundary conditions

We assume that the initial function q0(x) is compactly supported in a finite interval X ¼ ða; bÞ � R, with
b > a. To seek the numerical solution of problem (1) in X, two NRBCs are needed to be imposed on the
two boundary points R = {a,b}. In [10], a kind of exact NRBCs in the form of a generalized Dirichlet-
to-Neumann (DtN) mapping were presented with the inverse scattering theory by analyzing the following
problem
iqt þ qxx � 2qjqj2q ¼ 0 x 2 ð�1; aÞ [ ðb;þ1Þ; t > 0;

qðx; 0Þ ¼ 0 x 2 ð�1; aÞ [ ðb;þ1Þ.
ð2Þ
For example, let g0(t) = q(b,t) and g1(t) = qn(b,t). According to Eq. (13) in [10], g1 and g0 are related by
g1ðtÞ ¼ g0ðtÞM2ðt; tÞ þ
4i

p

Z
oD

2k2

Z t

0

e4ik2ðs�tÞM1ðt; 2s� tÞds�M1ðt; tÞ
2i

� �
dk; ð3Þ
where {Mj(t,s)}j=1,2, together with {Lj(t,s)}j=1,2, are determined by the following equations
L1ðt; tÞ ¼
i

2
g1ðtÞ; M1ðt; tÞ ¼ g0ðtÞ; L2ðt;�tÞ ¼ M2ðt;�tÞ ¼ 0; ð4Þ

L1t � L1s ¼ ig1ðtÞL2 þ aðtÞM1 þ bðtÞM2; ð5Þ

L2t þ L2s ¼ �iq�g1ðtÞL1 � aðtÞM2 þ q�bðtÞM1; ð6Þ

M1t �M1s ¼ 2g0ðtÞL2 þ ig1ðtÞM2; ð7Þ
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M2t þM2s ¼ 2q�g0ðtÞL1 � iq�g1ðtÞM1; ð8Þ

aðtÞ ¼ q
2
ðg0�g1 � �g0g1Þ; bðtÞ ¼ i

2
ð _g0 þ iqjg0j

2g0Þ. ð9Þ
Here, D denotes the first quadrant of the complex k-plane, i.e.,
D ¼ fk 2 CjRek > 0; Imk > 0g;

and oD denotes its boundary. The contour integral in (3) is understood in the sense of primary value, and the
orientation is from +i1 to 0 on the imaginary axis, and then to +1 on the real axis. We should note that
there is a misprint in the expression of function b in [10].

Theoretically, if the Dirichlet function g0(t) is prescribed, substituting Eq. (3) into Eqs. (4)–(9) gives a sys-
tem of nonlinear PDEs for {Lj,Mj}j=1,2 in terms of g0(t). After solving this system (the solvability is still an
open problem), the Neumann function g1(t) can then be determined by Eq. (3). For convenience of reference,
we explicitly formulate this mapping from g0(t) to g1(t) as
g1ðtÞ ¼Kðt; g0Þ. ð10Þ

Owing to the involvement of a double integral, Eq. (3) is unsuitable for the numerical treatment. Using the

integral identity
Z
oD

1� e�ik2

k2
dk ¼ 2

ffiffiffi
p
p

eip=4; ð11Þ
we can derive an equivalent equation. For any fixed t > 0, let f(s) = M1(t,2s � t) and
I ¼
Z

oD
2k2

Z t

0

e4ik2ðs�tÞf ðsÞds�M1ðt; tÞ
2i

� �
dk.
From (7) and (4), we have f(0) = M1(t,�t) = 0. Furthermore, Integrating by parts gives
I ¼
Z

oD

1

2i

Z t

0

f ðsÞde4ik2ðs�tÞ �M1ðt; tÞ
2i

� �
dk ¼ � 1

2i

Z
oD

Z t

0

f 0ðsÞe4ik2ðs�tÞ dsdk

¼ � 1

2i

Z
oD

Z t

0

f 0ðsÞd e4ik2ðs�tÞ � 1

4ik2
dk ¼ � 1

2i

Z
oD

f 0ð0Þð1� e�4ik2tÞ
4ik2

þ
Z t

0

1� e�4ik2ðt�sÞ

4ik2
f 00ðsÞds

" #
dk

¼ � 1

2i

f 0ð0Þ
4i

ffiffiffiffi
4t
p
þ
Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðt � sÞ

p
4i

f 00ðsÞds

" #
2
ffiffiffi
p
p

eip=4 ¼
ffiffiffi
p
p

4
eip=4

Z t

0

f 0ðsÞffiffiffiffiffiffiffiffiffiffi
t � s
p ds.
Substituting this equality into (3), we obtain
g1ðtÞ ¼ g0ðtÞM2ðt; tÞ �
e�ip=4ffiffiffi

p
p

Z t

0

osM1ðt; 2s� tÞffiffiffiffiffiffiffiffiffiffi
t � s
p ds ¼ g0ðtÞM2ðt; tÞ � e�ip=4o

1=2
s M1ðt; 2s� tÞjs¼t; ð12Þ
where o1=2
s designates the fractional time derivative operator of half-order given by
o1=2
s f ðsÞ ¼ 1ffiffiffi

p
p os

Z s

0

f ðsÞffiffiffiffiffiffiffiffiffiffi
s� s
p ds ¼ 1ffiffiffi

p
p

Z s

0

f 0ðsÞffiffiffiffiffiffiffiffiffiffi
s� s
p ds
if f(0) = 0. See [11] for details.
Now utilizing (10) as a boundary condition and imposing it on the boundary point b, and repeating the

above deduction for the boundary point a, we can derive a new problem, which is only defined in the finite
computational interval X = (a,b)
iotqþ o2
xq� 2qjqj2q ¼ 0 in X; t > 0;

onqðx; tÞ ¼Kðt; qðx; �ÞÞ on R; t > 0;

qðx; 0Þ ¼ q0ðxÞ in X.

ð13Þ
According to our analysis, its solution is exactly the same as that of the original problem (1) restricted to X.
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3. Numerical issues

When one tries to numerically solve the problem (13), three issues have to be considered:

1. the discretization method for the cubic NLS equation;
2. the approximation method for the DtN operator K in the discrete level;
3. the match of the two selections made above.

The first two issues typically concern with accuracy and efficiency of different numerical choices, while the
last one is much related to the stability of the overall scheme, since for the linear Schrödinger equation, an
improper match of the discretization of NRBCs and the interior discretization will lead to a loss of stability,
even if the unconditionally stable Crank–Nicolson scheme is used to discretize the equation (see [15]). In the
following, we discuss these issues in detail.
3.1. Discretization of the cubic NLS equation

Many articles have been devoted to the numerical study of the Schrödinger-type equations utilizing different
time discretizations. Two popular cases use schemes of time-splitting type and Crank–Nicolson type. The most
remarkable advantage of time-splitting-type schemes lies in the application of the FFT, a most valuable and
notable numerical algorithm in the science and engineering. But this method requires some periodic boundary
conditions to bound the computational domain, and it is surely not this case for our considered problem setting.
The Crank–Nicolson-type schemes are of second order in time, and usually unconditionally stable in the sense
of L2-norm. Besides, for the whole space problems, they conserve the charge and the energy in the discrete level,
which are two conserved quantities in the continuous version.

Based on the method of Strauss and Vázquez [18], Delfour et al. [8] proposed the first standard Crank–
Nicolson scheme (referred to as CN-Delfour in the following) for the NLS equation, which reads
i
qnþ1 � qn

Dt
þ o2

x

qnþ1 þ qn

2
� 2q

jqnþ1j2 þ jqnj2

2

qnþ1 þ qn

2
¼ 0; ð14Þ
where Dt denotes the time step and qn(x) denotes the approximation of q(x, tn) with tn = nDt. Based on the
discretization of q by the mid-point rule, Durán and Sanz-Serna [9] proposed another Crank–Nicolson-type
scheme (CN–Durán–Sanz-Serna)
i
qnþ1 � qn

Dt
þ o2

x

qnþ1 þ qn

2
� 2q

qnþ1 þ qn

2

����
����
2

qnþ1 þ qn

2
¼ 0; ð15Þ
which is well adapted for computing soliton-like solutions. Notice that these two schemes are globally nonlin-
early implicit, and at each time step, an iterative procedure is needed to be performed. Comparatively, Zhang
et al. [20] proposed a three-stage Leap–Frog time discretization
i
qnþ1 � qn�1

2Dt
þ o2

x

qnþ1 þ qn�1

2
� 2qjqnj2 qnþ1 þ qn�1

2
¼ 0. ð16Þ
This scheme is still of second order and good conservation properties, but only globally linearly implicit, thus
then a direct solver based on the LU decomposition can be employed in the computation. A drawback of this
scheme is that it is not selfstarting, in the sense that q1 has to be provided by some other scheme such as
Cauchy iteration or the Crank–Nicolson linearly implicit scheme with a small time step. To avoid this special
treatment, Besse [7] designed a relaxation scheme (CN-Besse)
i
qnþ1 � qn

Dt
þ o2

x

qnþ1 þ qn

2
� 2q/nþ1

2
qnþ1 þ qn

2
¼ 0; ð17Þ
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with /nþ1
2 given by
/
1
2 ¼ jq0j2; /nþ1

2 ¼ 2jqnj2 � /n�1
2.
3.2. Approximation of the DtN operator K

We first address on how to evaluate the unknown functions {Lj(t,s)}j = 1,2 and {Mj(t,s)}j=1,2 in Eqs. (4)–(9),
provided that g0(t) and g1(t) are prescribed. For any function A(Æ,Æ) defined in
fðt; sÞ : �t 6 s 6 t; 0 6 t 6 NDt ¼ T f g;
we let An
j � Aðtn;�tn þ 2jDtÞ, j = 0,1, . . .,n. Here, Tf denotes the ending time point. Besides, we let gn

0 � g0ðtnÞ
and gn

1 � g1ðtnÞ. Note that 1ffiffi
2
p ðAt þ AsÞ ¼ ð 1ffiffi

2
p ; 1ffiffi

2
p Þ � rA is the directional derivative of A with angle p

4
, and

1ffiffi
2
p ðAt � AsÞ ¼ ð 1ffiffi

2
p ;� 1ffiffi

2
p Þ � rA is that with angle � p

4
. From Eq. (7) and the boundary conditions (4), we have

M1(t,�t) = M1(0,0) = 0. Then from Eq. (5), we have L1(t,�t) = L1(0,0) = 0. Thus naturally, we set
Ln
1;0 ¼ Mn

1;0 ¼ 0. ð18Þ
From Eq. (8), M2(t,t) can be integrated out explicitly since L1(t,t) and M1(t,t) are known functions. Then, from
Eq. (6), L2(t,t) can be computed. To evaluate them numerically, we use the trapezoidal scheme, i.e. we solve
Mn

2;n from
Mn
2;n �Mn�1

2;n�1

Dt
¼ q�g0cðLn

1;n þ Ln�1
1;n�1Þ � iq�g1c

Mn
1;n þMn�1

1;n�1

2
ð19Þ
with
g0c ¼
gn

0 þ gn�1
0

2
; g1c ¼

gn
1 þ gn�1

1

2
;

and then, we solve Ln
2;n from
Ln
2;n � Ln�1

2;n�1

Dt
¼ �iq�g1c

Ln
1;n þ Ln�1

1;n�1

2
� ac

Mn
2;n þMn�1

2;n�1

2
þ q�bc

Mn
1;n þMn�1

1;n�1

2
ð20Þ
with
ac ¼
q
2
ðg0c�g1c � �g0cg1cÞ; bc ¼

i

2

gn
0 � gn�1

0

Dt
þ iqjg0cj

2g0c

� �
.

To compute fLn
1;j;M

n
1;j; L

n
2;j;M

n
2;jg

n�1
1 , we could employ the same trapezoidal scheme for PDEs (5)–(8) to get a

second order approximation:
Ln
1;j � Ln�1

1;j

Dt
¼ ig1c

Ln
2;j þ Ln�1

2;j

2
þ ac

Mn
1;j þMn�1

1;j

2
þ bc

Mn
2;j þMn�1

2;j

2
; ð21Þ

Ln
2;j � Ln�1

2;j�1

Dt
¼ �iq�g1c

Ln
1;j þ Ln�1

1;j�1

2
� ac

Mn
2;j þMn�1

2;j�1

2
þ q�bc

Mn
1;j þMn�1

1;j�1

2
; ð22Þ

Mn
1;j �Mn�1

1;j

Dt
¼ 2g0c

Ln
2;j þ Ln�1

2;j

2
þ ig1c

Mn
2;j þMn�1

2;j

2
; ð23Þ

Mn
2;j �Mn�1

2;j�1

Dt
¼ 2q�g0c

Ln
1;j þ Ln�1

1;j�1

2
� i q�g1c

Mn
1;j þMn�1

1;j�1

2
. ð24Þ
But this choice will necessitate solving a 4(n�1)-order system of linear algebraic equations on the nth time step,
which is too expensive if the number of the time steps is large, since any direct solver based on Gauss elim-
ination requires O(n3) operations. Instead of the trapezoidal scheme, we can employ its explicit counterpart
with the predictor–corrector technique. That is to say, we first use the Euler scheme to derive the first-order
approximations fLn

1;j;�;M
n
1;j;�; L

n
2;j;�;M

n
2;j;�g

n�1
1
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Ln
1;j;� � Ln�1

1;j

Dt
¼ ig1cL

n�1
2;j þ acMn�1

1;j þ bcM
n�1
2;j ; ð25Þ

Ln
2;j;� � Ln�1

2;j�1

Dt
¼ �iq�g1cL

n�1
1;j�1 � acMn�1

2;j�1 þ q�bcM
n�1
1;j�1; ð26Þ

Mn
1;j;� �Mn�1

1;j

Dt
¼ 2g0cL

n�1
2;j þ ig1cM

n�1
2;j ; ð27Þ

Mn
2;j;� �Mn�1

2;j�1

Dt
¼ 2q�g0cL

n�1
1;j�1 � iq�g1cM

n�1
1;j�1; ð28Þ
then we compute fLn
1;j;M

n
1;j; L

n
2;j;M

n
2;jg

n�1
1 by replacing those of them appearing in the right hand side of Eqs.

(21)–(24) with fLn
1;j;�;M

n
1;j;�; L

n
2;j;�;M

n
2;j;�g

n�1
1

Ln
1;j � Ln�1

1;j

Dt
¼ ig1c

Ln
2;j;� þ Ln�1

2;j

2
þ ac

Mn
1;j;� þMn�1

1;j

2
þ bc

Mn
2;j;� þMn�1

2;j

2
; ð29Þ

Ln
2;j � Ln�1

2;j�1

Dt
¼ �iq�g1c

Ln
1;j;� þ Ln�1

1;j�1

2
� ac

Mn
2;j;� þMn�1

2;j�1

2
þ q�bc

Mn
1;j;� þMn�1

1;j�1

2
; ð30Þ

Mn
1;j �Mn�1

1;j

Dt
¼ 2g0c

Ln
2;j;� þ Ln�1

2;j

2
þ ig1c

Mn
2;j;� þMn�1

2;j

2
; ð31Þ

Mn
2;j �Mn�1

2;j�1

Dt
¼ 2q�g0c

Ln
1;j;� þ Ln�1

1;j�1

2
� iq�g1c

Mn
1;j;� þMn�1

1;j�1

2
. ð32Þ
Comparatively, this scheme only requires O(n) operations, but is still of second order.
Next, we consider the approximation of the integral in Eq. (12). The difficulty lies in the treatment of the half-

order derivative, which is strongly related to the DtN mapping of the linear free Schrödinger equation. In [6],
based on the piecewise linear interpolation of the unknown function, Baskakov and Popov proposed a discret-
ization method of 1.5th order for its half-order derivative. More recently, Antoine and Besse [3] gave another
kind of approximation of the half-order derivative based on the semi-discretization of the free Schrödinger
equation in time. Compared with the former, the latter not only has a higher accuracy of second order, but leads
to an unconditionally stable numerical scheme when cooperating with the interior Crank–Nicolson discretiza-
tion for the free Schrödinger equation, while the former generally leads to a loss of stability (see [15]). Utilizing
either of these two methods, we derive the following approximation of Eq. (12)
gn
1 ¼ gn

0Mn
2;n � e�ip=4 2ffiffiffiffiffiffiffiffi

2Dt
p

Xn

j¼0

ajMn
1;n�j ð33Þ
where
aj ¼

ffiffi
2
p

q
j ¼ 0;ffiffi

2
p

q
1ffiffiffiffiffiffi

jþ1
p

þ
ffiffi
j
p � 1ffiffi

j
p
þ
ffiffiffiffiffiffi
j�1
p

� �
j > 0.

8>><
>>:
for the Baskakov–Popov method [6] and
aj ¼
ð2kÞ!

22kðk!Þ2 ; j ¼ 2k;

�aj�1; j ¼ 2k þ 1.

(

for the Antoine–Besse method [3].
Now we come to the approximation of the DtN operator K involved in (10). K is essentially a non-

linear operator, and it must be evaluated by some iterative technique. Although other possibilities could
be explored, we present here a successive approximation method. Though simple, it turns out to be very
efficient by our numerical tests. For reference, we denote this approximation by KDt in the following:



Box 1. Successive approximation method for computing gn
1 ¼ Ktðtn; fgj

0g
n
0Þ.

if n = 0, then
Set gn

1 ¼ 0, L0
1;0 ¼M0

1;0 ¼ L0
2;0 ¼M0

2;0 ¼ 0

else
Let gn

1 ¼ gn�1
1 ¼KDtðtn�1; fgj

0g
n�1
0 Þ initially

do
compute fLn

1;j ;M
n
1;j ; L

n
2;j ;M

n
2;jg

n
0 from (4), (18), (19), (20), (26)–(32)

set v ¼ gn
0Mn

2;n � e�ip=4 2ffiffiffiffiffiffi
2Dt
p

Pn
j¼0ajM

n
1;n�j

if jv � gn
1 j < �, exit

else, set gn
1 ¼ v

end if

end do
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3.3. Match of the interior discretization and the approximation of the DtN mapping

Formally, we can couple any of the interior Crank–Nicolson-type discretizations with the discretized DtN
operator KDt to derive an overall scheme for the problem (13). Any choice will leads to a system of essentially
nonlinear equations. Since the according Jacobian is complicated to obtain, we propose a successive approx-
imation method, which is adapted from the algorithm in Table 4.1 of [3].
Box 2. Algorithm for solving the cubic NLS with the exact NRBCs.

let qn+1 = qn initially
do

solve the linear boundary-value problem

i w�qn

Dt
þ o2

x
wþqn

2
¼ Unþ1

2
ðqn;qnþ1Þ qnþ1þqn

2
in X;

onw þ e�ip=4 2ffiffiffiffiffiffi
2Dt
p w ¼KDtðtnþ1; fqjgnþ1

0 Þ þ e�ip=4 2ffiffiffiffiffiffi
2Dt
p qnþ1 on R;

8<
: ð34Þ

if kw � qnþ1kL2ðXÞ < �, set qn+1 = w, and exit
else, set qn+1 = w
end if

end do
The function Unþ1
2

in Box 2 is defined as
Unþ1
2
ðqn; qnþ1Þ ¼

qðjqnj2 þ jqnþ1j2Þ for CN–Delfour;

q jq
nþqnþ1j2

2
for CN–Dur�an–Sanz-Serna;

4qjqnj2 � Un�1
2
ðqn�1; qnÞ for CN–Besse with U1

2
¼ 2qjq0j2.

8>><
>>: ð35Þ
We write the NRBCs as Robin-type intentionally, since our vast numerical tests show that when cooperating
this kind of boundary conditions, the system (34) has a good local convergence property.

The system (34) can be solved either by finite difference method (FD) or by finite element method (FEM).
Thus, for different choices of the interior time and space discretization and for different choices of the discret-
ized DtN operator, we get a series of different numerical schemes. For convenience of reference, we combine
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these choices together to denote the specific scheme. For example, if scheme CN-Durán–Sanz-Serna is used for
time discretization and the conform linear finite element is used for spatial discretization, the scheme is abbre-
viated to Durán–Sanz-Serna-FEM1. And if method Antoine–Besse is further specified for the approximation
of the DtN operator K, the scheme is denoted by Durán–Sanz-Serna-FEM1–Antoine–Besse.

As revealed by Mayfield, an improper match of the interior discretization and the approximation of the
NRBCs would generally lead to a loss of stability for the linear Schrödinger equation, even if the interior dis-
cretization is unconditionally stable for the whole space problem. This might also happen for our proposed
scheme. But in our numerical tests, we do not observe this phenomenon. A further study is still under
investigation.

4. Numerical experiments

The one-dimensional cubic nonlinear Schrödinger equation is integrable, and theoretically, it can be solved
with the inverse scattering theory. For the focusing case, this approach yields the exact soliton solution given
by
Table
Numer

Time s

Baskak

Error
Order
Ite. nu
Time

Antoin

Error
Order
Ite. nu
Time
qexaðx; tÞ ¼
ffiffiffi
a
p

sechð
ffiffiffi
a
p
ðx� ctÞÞeic2xþða�c2

4 Þ t. ð36Þ

The real parameter a is the amplitude of the wavefield, and c is the velocity of the soliton. We will take it as a
reference solution to test the accuracy of our numerical scheme, since this solution decays exponentially fast
with respect to the spatial variable, and it can be taken as a ‘‘compact’’ function at the initial time, as required
by our problem setting.

In all the numerical tests, we take � = 10�6 for both algorithms in Box 1 and Box 2. The computation is
performed on a personal computer with a 1.70 GHz CPU and 1GB of memory.

4.1. Tests on the discrete DtN operator KDt

First, we consider the computational aspects of the nonlinear DtN mapping. Let a = 2 and c = 15 in the
soliton expression (36). In (X, +1) · (0,1) with X = 10, qexa(x,0) is equal to zero function with a tolerance
of 2.043 · 10�6. Thus, if letting g0(t) = qexa(X,t), the exact Neumann function g1,exa(t) can be taken to be ox

qexa(X,t). Now we use the algorithm in Box 1 to compute the numerical approximation of g1,exa(t) on the time
interval [0,2].

Table 1 lists the numerical statistics for different time steps when either of the two approximation methods
is employed. Row ‘‘Error’’ lists the relative errors at the time point t = 0.8. From this table, we see that
method Antoine–Besse has a higher accuracy than method Baskakov–Popov, just as anticipated above. Since
the number of iterations, denoted by in at the nth time step, are different at different time steps, and the number
of operations for each iteration is O(n), for comparison, we define the average number of iterations (Ite. Num.)

as

PN

n¼1
ninPN

n¼1
n

. Row ‘‘Time’’ lists the total computation time given in unit of second. From Table 1, we see that the

successive approximation algorithm of the discretized DtN operator is quite satisfactory. The average number
1
ical statistics on the discretized DtN operator

tep Dt 0.01 0.005 0.0025 0.00125

ov–Popov

4.624E�2 2.270E�2 9.537E�3 3.730E�3
– 1.027 1.251 1.355

m. 3.066 2.654 2.284 2.081
0.02 0.06 0.22 0.87

e–Besse

1.797E�2 4.523E�3 1.134E�3 2.850E�4
– 1.991 1.996 1.993

m. 3.478 3.075 2.865 2.680
0.02 0.08 0.27 1.09
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of iterations is generally less than 4. We should remark here that this is also almost true for other numerical
tests.

In Fig. 1, the absolute error functions are plotted for these two methods. The time step is set to be Dt = 0.005.
We see that method Antoine–Besse is much more accurate than method Baskakov–Popov. Besides, instability
is not detected in this numerical test.

4.2. Tests on the successive approximation algorithm in Box 2

We let X = (�10,10), a = 2, c = 15, Tf = 2 and q0(x) = qexa(x,0). Owing to the same reason as in 4.1, the
exact solution can be taken as qexa(x,t).

To explore the convergence rate in space, we let the time step be extremely small, Dt = 0.0001. Fig. 2 shows
the absolute L2 errors at t = 0.7. At this time point, more than 80 percent of the total charge has moved out
the computational domain. From this figure, we observe a second-order decrease of the errors for any of the
employed schemes, no matter which approximation is used for the discretized DtN operator. To explore the
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convergence rate in time, the number of the grid points is set to be M = 400000. Fig. 3 shows the numerical
results. A second-order accuracy in time can be observed for any of the proposed schemes.

Next, we study the error change process with the time evolution. Let Dt = 0.001, M = 4000. Fig. 4 shows
the evolution of the absolute errors. We see that before the time point t = 0.5, when the soliton is still a little
far away from the boundary points, the boundary conditions do not take into effect, and the errors are accu-
mulated almost linearly. We would remark that this process is typical when numerically solving any of the
time-dependent problems, and it is not originated from any kind of the possibly-existing instability properties
of the numerical schemes. After time t = 0.5, owing to the wonderfully nonreflecting property of the artificial
boundary conditions, the charge moves out the computational domain, and accordingly, the errors drops after
time t = 0.6. In the end, after time t = 1.0 when most of the charge moves out, the errors nearly remain a con-
stant value. For method Baskakov–Popov used to discretize the DtN operator, this value is almost 0.002,
while for method Antoine–Besse, this value is less than 1.1 · 10�4. Thus, compared with method Baskakov–
Popov, method Antoine–Besse presents numerical solutions with less reflections. We plot the amplitude of the
soliton in Fig. 5 with scheme Durán–Sanz-Serna-FEM1–Antoine–Besse. No observable reflections can be
detected at all.

Table 2 lists some numerical statistics, where M. num. stands for the maximal iteration number in the algo-
rithm in Box 2, while A. num. stands for the average iteration number. We see that compared with method
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Fig. 5. Evolution of the amplitude of a ‘‘fast’’ soliton.

Table 2
Numerical statistics

Baskakov–Popov Antoine–Besse

M. num. A. num. Time M. num. A. num. Time

Delfour-FD 6 2.939 16 3 2.385 14
Delfour-FEM1 6 2.939 21 3 2.385 18
Durán–Sanz-Serna-FD 6 2.939 16 3 2.385 14
Durán–Sanz-Serna-FEM1 6 2.939 21 3 2.385 19
Besse-FD 6 2.932 16 3 2.382 15

Dt = 0.001, M = 4000 and Tf = 2.
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Baskakov–Popov, method Antoine–Besse typically leads to less iterations, which is another remarkable advan-
tage of this approximation.

For comparison, we also plot in Fig. 6 the errors of the numerical solution of a ‘‘slow’’ soliton with a speed
c = 4. The time step is 0.001 and the number of grid points is M = 4000, same as those used for the ‘‘fast’’
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Fig. 6. Evolution of the absolute errors for a ‘‘slow’’ soliton.
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soliton. The ending time point is Tf = 7.5. Again, we observe that method Antoine–Besse leads to less reflec-
tions compared with method Baskakov–Popov, even the latter has already presented a fairly good approxi-
mation. Besides, comparing Fig. 7 with Fig. 5, We observe that for the same computational parameters Dt

and M, we get a higher resolution for a ‘‘slow’’ soliton. This is much different from the behaviour of the
approximate NRBCs designed by Antoine, Besse and Descombes [3]. Since their NRBCs are designed under
a high-frequency assumption, their approach is more efficient for a high speed soliton, and their numerical
tests also verify this point. On the contrary, since our NRBCs are exactly nonreflecting in their continuous
form, a ‘‘slow’’ soliton has a better resolution than a ‘‘fast’’ one in time when their time steps are the same
value. Fig. 7 shows the results with scheme Durán–Sanz-Serna-FEM1–Antoine–Besse. Again, no reflections
can be observed.

We would also remark that no instability is observed from our vast numerical tests.
Fig. 7. Evolution of the amplitude of a ‘‘slow’’ soliton.

Fig. 8. Interaction of two ‘‘fast’’ solitons with opposite directions.
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4.3. Application to the soliton interaction

Finally, we use scheme Durán–Sanz-Serna-FEM1–Antoine–Besse to simulate the interaction of two soli-
tons. This problem has been investigated by Antoine, Besse and Descombes [3] to show the robustness of their
approach. We repeat this experiment here to fulfill the same purpose. The computational interval is set to be
X = [�20,20]. Dt = 0.001 and M = 8000. The amplitudes of the solitons are of the same value a = 2, and in
each test case, two solitons are initially located at x = �10 and x = 10, respectively. Fig. 8 shows the interac-
tion of two ‘‘fast’’ solitons with the speed jcj = 15 which travel with opposite directions. Fig. 9 shows the inter-
action of a ‘‘fast’’ soliton and a ‘‘slow’’ soliton with opposite directions. Their velocities are c = 15 and c = �4.
Fig. 10 shows the interaction of a ‘‘fast’’ soliton and a ‘‘slow’’ soliton with same directions. Their velocities are
Fig. 9. Interaction of a ‘‘fast’’ soliton and a ‘‘slow’’ soliton with opposite directions.

Fig. 10. Interaction of a ‘‘fast’’ soliton and a ‘‘slow’’ soliton with same directions.
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c = 15 and c = 2. From these figures, we can not find any observable reflections on the boundary points, even
an artifical light is added to each figure to show its refined structure.

5. Conclusion

We have derived a kind of exact nonreflecting boundary conditions for one-dimensional cubic nonlinear
Schrödinger equations. They are based on the work of Boutet de Monvel at el. on the nonlinear spectral anal-
ysis of NLS on the half-line. We have designed a series of numerical schemes, which are all second order both
in time and in space, as verified by our numerical experiments. Besides, we have used our scheme to simulate
the evolution of the solitons, and the results show the robustness of our approach.

In fact, the idea of Boutet de Monvel at el. is applicable for some other nonlinear evolution PDEs defined in
unbounded domains. We are hopeful that our idea for the cubic NLS can be adapted to these problems.
Besides, it seems more promising to extend our approach to higher-dimensional problems. All these are
now under investigation, and the results will be reported in the near future.
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